Search results for "Estels"
showing 9 items of 9 documents
Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei
2016
Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims. We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods. We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolut…
Evidence of Halpha periodicities in LSI+61·303
1999
We present the results of analyzing H$\alpha$ spectra of the radio emitting X-ray binary LS I+61303. For the first time, the same 26.5 d radio period is clearly detected in the H$\alpha$ emission line. Moreover, the equivalent width and the peak separation of the H$\alpha$ emission line seem also to vary over a time scale of 1600 days. This points towards the $\sim4$ yr modulation, detected in the radio outburst amplitude, being probably a result of variations in the mass loss rate of the Be star and/or density variability in the circumstellar disk. In addition, the dependence of the peak separation from the equivalent width informs us that the LS I+61303 circumstellar disk is among the den…
Non-thermal radiation from a pulsar wind interacting with an inhomogeneous stellar wind
2017
Binaries hosting a massive star and a non-accreting pulsar are powerful non-thermal emitters due to the interaction of the pulsar and the stellar wind. The winds of massive stars are thought to be inhomogeneous, which could have an impact on the non-thermal emission. We study numerically the impact of the presence of inhomogeneities or clumps in the stellar wind on the high-energy non-thermal radiation of high-mass binaries hosting a non-accreting pulsar. We compute the trajectories and physical properties of the streamlines in the shocked pulsar wind without clumps, with a small clump, and with a large one. This information is used to compute the synchrotron and inverse Compton emission fr…
Long-term X-ray variability of the microquasar system LS 5039/RX J1826.2−1450
2003
We report on the results of the spectral and timing analysis of a BeppoSAX observation of the microquasar system LS 5039/RX J1826.2-1450. The source was found in a low-flux state with Fx(1-10 keV)= 4.7 x 10^{-12} erg cm^{-2} s^{-1}, which represents almost one order of magnitude lower than a previous RXTE observation 2.5 years before. The 0.1--10 keV spectrum is described by an absorbed power-law continuum with photon-number spectral index Gamma=1.8+-0.2 and hydrogen column density of NH=1.0^{+0.4}_{-0.3} x 10^{22} cm^{-2}. According to the orbital parameters of the system the BeppoSAX observation covers the time of an X-ray eclipse should one occur. However, the 1.6-10 keV light curve does…
Constraining the thin disc initial mass function using Galactic classical Cepheids
2016
Context: The Initial Mass Function (IMF) plays a crucial role on galaxy evolution and its implications on star formation theory make it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is a major subject of debate and analysis both for Galactic and extragalactic science. Aims: Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic Classical Cepheids and Tycho-2 data. Methods: For the first time the Besan\c{c}on Galaxy Model (BGM) has been used to characterise the Galactic population of the Classical Cepheids. We have modified the age configuration in the youngest populations…
Estels de neutrons : vestigis de grans explosions.
2000
Juan.Miralles@uv.es
Is it possible to explore Peccei-Quinn axions from frequency dependence radiation dimming?
2011
Abstract We explore how the Peccei–Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon–axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, l…
Orbital X‐Ray Variability of the Microquasar LS 5039
2005
The properties of the orbit and the donor star in the high mass X-ray binary microquasar LS 5039 indicate that accretion processes should mainly occur via a radiatively driven wind. In such a scenario, significant X-ray variability would be expected due to the eccentricity of the orbit. The source has been observed at X-rays by several missions, although with a poor coverage that prevents to reach any conclusion about orbital variability. Therefore, we conducted RossiXTE observations of the microquasar system LS 5039 covering a full orbital period of 4 days. Individual observations are well fitted with an absorbed power-law plus a Gaussian at 6.7 keV, to account for iron line emission that …
Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago
2019
We use Gaia DR2 magnitudes, colours and parallaxes for stars with G<12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …